Christopher J. Ciccarino, Chitraleema Chakraborty, Dirk R. Englund, and Prineha Narang. 11/26/2018. “Carrier dynamics and spin–valley–layer effects in bilayer transition metal dichalcogenides.” Faraday Discussions. Publisher's VersionAbstract
Transition metal dichalcogenides are an interesting class of low dimensional materials in mono- and few-layer form with diverse applications in valleytronic, optoelectronic and quantum devices. Therefore, the general nature of the band-edges and the interplay with valley dynamics is important from a fundamental and technological standpoint. Bilayers introduce interlayer coupling effects which can have a significant impact on the valley polarization. The combined effect of spin–orbit and interlayer coupling can strongly modify the band structure, phonon interactions and overall carrier dynamics in the material. Here we use first-principles calculations of electron–electron and electron–phonon interactions to investigate bilayer MoS2 and WSe2 in both the AA′ and AB stacking configurations. We find that in addition to spin–orbit coupling, interlayer interactions present in the two configurations significantly alter the near-band-edge dynamics. Scattering lifetimes and dynamic behavior are highly material-dependent, despite the similarities and typical trends in TMDCs. Additionally, we capture significant differences in dynamics for the AA′ and AB stacking configurations, with lifetime values differing by up to an order of magnitude between them for MoS2. Further, we evaluate the valley polarization times and find that maximum lifetimes at room temperature are of the scale of 1 picosecond for WSe2 in the AB orientation. These results present a pathway to understanding complex heterostructure configurations and ‘magic angle’ physics in TMDCs.
Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and Prineha Narang. 10/18/2018. “Qubit Allocation for Noisy Intermediate-Scale Quantum Computers .” arXiv:1810.08291 [quant-ph]. Publisher's Version
Nicholas Rivera, Jennifer Coulter, Thomas Christensen, and Prineha Narang. 8/31/2018. “Ab initio calculation of phonon polaritons in silicon carbide and boron nitride.” arXiv:1809.00058. Publisher's Version
Ravishankar Sundararaman, Thomas Christensen, Yuan Ping, Nicholas Rivera, John D. Joannopoulos, Marin Soljačić, and Prineha Narang. 6/8/2018. “Plasmonics in Argentene.” arXiv:1806.02672. Publisher's VersionAbstract
Two-dimensional materials exhibit a fascinating range of electronic and photonic properties vital for nanophotonics, quantum optics and emerging quantum information technologies. Merging concepts from the fields of ab initio materials science and nanophotonics, there is now an opportunity to engineer new photonic materials whose optical, transport, and scattering properties are tailored to attain thermodynamic and quantum limits. Here, we present first-principles calculations predicting that Argentene, a single-crystalline hexagonal close-packed monolayer of Ag, can dramatically surpass the optical properties and electrical conductivity of conventional plasmonic materials. In the low-frequency limit, we show that the scattering rate and resistivity reduce by a factor of three compared to the bulk three-dimensional metal. Most importantly, the low scattering rate extends to optical frequencies in sharp contrast to e.g. graphene, whose scattering rate increase drastically in the near-infrared range due to optical-phonon scattering. Combined with an intrinsically high carrier density, this facilitates highly-confined surface plasmons extending to visible frequencies. We evaluate Argentene across three distinct figures of merit, spanning the spectrum of typical plasmonic applications; in each, Argentene outperforms the state-of-the-art. This unique combination of properties will make Argentene a valuable addition to the two-dimensional heterostructure toolkit for quantum electronic and photonic technologies.
Johannes Flick and Prineha Narang. 2018. “Cavity-Correlated Electron-Nuclear Dynamics from First Principles.” Physical Review Letters, 121, 11, Pp. 113002–. Publisher's Version
Christopher J. Ciccarino, Thomas Christensen, Ravishankar Sundararaman, and Prineha Narang. 2018. “Dynamics and Spin-Valley Locking Effects in Monolayer Transition Metal Dichalcogenides.” Nano Letters, 18, 9, Pp. 5709–5715. Publisher's Version
Flick Johannes, Rivera Nicholas, and Narang Prineha. 2018. “Strong light-matter coupling in quantum chemistry and quantum photonics.” Nanophotonics, 7, Pp. 1479. Publisher's Version
Jennifer Coulter, Ravishankar Sundararaman, and Prineha Narang. 2018. “Microscopic origins of hydrodynamic transport in the type-II Weyl semimetal WP2.” Physical Review B, 98, 11, Pp. 115130–. Publisher's Version
Sharmila N. Shirodkar, Marios Mattheakis, Paul Cazeaux, Prineha Narang, Marin Soljacic, and Efthimios Kaxiras. 2018. “Quantum plasmons with optical-range frequencies in doped few-layer graphene.” Phys. Rev. B, 97, Pp. 195435. Publisher's VersionAbstract
Although plasmon modes exist in doped graphene, the limited range of doping achieved by gating restricts the plasmon frequencies to a range that does not include the visible and infrared. Here we show, through the use of first-principles calculations, that the high levels of doping achieved by lithium intercalation in bilayer and trilayer graphene shift the plasmon frequencies into the visible range. To obtain physically meaningful results, we introduce a correction of the effect of plasmon interaction across the vacuum separating periodic images of the doped graphene layers, consisting of transparent boundary conditions in the direction perpendicular to the layers; this represents a significant improvement over the exact Coulomb cutoff technique employed in earlier works. The resulting plasmon modes are due to local field effects and the nonlocal response of the material to external electromagnetic fields, requiring a fully quantum mechanical treatment. We describe the features of these quantum plasmons, including the dispersion relation, losses, and field localization. Our findings point to a strategy for fine-tuning the plasmon frequencies in graphene and other two-dimensional materials.
Olga Lozan, Ravishankar Sundararaman, Buntha Ea-Kim, Jean-Michel Rampnoux, Prineha Narang, Stefan Dilhaire, and Philippe Lalanne. 2017. “Increased rise time of electron temperature during adiabatic plasmon focusing.” Nature Communications, 8, 1, Pp. 1656. Publisher's VersionAbstract
Decay of plasmons to hot carriers has recently attracted considerable interest for fundamental studies and applications in quantum plasmonics. Although plasmon-assisted hot carriers in metals have already enabled remarkable physical and chemical phenomena, much remains to be understood to engineer devices. Here, we present an analysis of the spatio-temporal dynamics of hot electrons in an emblematic plasmonic device, the adiabatic nanofocusing surface-plasmon taper. With femtosecond-resolution measurements, we confirm the extraordinary capability of plasmonic tapers to generate hot carriers by slowing down plasmons at the taper apex. The measurements also evidence a substantial increase of the ``lifetime''of the electron gas temperature at the apex. This interesting effect is interpreted as resulting from an intricate heat flow at the apex. The ability to harness the ``lifetime''of hot-carrier gases with nanoscale circuits may provide a multitude of applications, such as hot-spot management, nonequilibrium hot-carrier generation, sensing, and photovoltaics.
Bart de Nijs, Felix Benz, Steven J. Barrow, Daniel O. Sigle, Rohit Chikkaraddy, Aniello Palma, Cloudy Carnegie, Marlous Kamp, Ravishankar Sundararaman, Prineha Narang, Oren A. Scherman, and Jeremy J. Baumberg. 2017. “Plasmonic tunnel junctions for single-molecule redox chemistry.” Nature Communications, 8, 1, Pp. 994. Publisher's VersionAbstract
Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.
N. Jiang, E. Zarkadoula, P. Narang, A. Maksov, I. Kravchenko, A. Borisevich, S. Jesse, and S. V. Kalinin. 2017. “Atom-by-atom fabrication by electron beam via induced phase transformations.” MRS Bulletin, 42, 9, Pp. 653-659. Publisher's VersionAbstract
New developments in manufacturing and automation, from three-dimensional printing to the “Internet of things,” signify dramatic changes in our society. The push toward quantum materials is driving device fabrication toward atomic precision. Recent results suggest that scanning transmission electron microscopy (STEM) with sub-angstrom scale beams could offer a solution. However, a detailed theoretical understanding of the interaction of the electron beam with solids is needed to form a basis for new technology. This article summarizes the existing literature on electron-beam interactions with solids with a focus on irreversible transformation. We further suggest that the theoretical framework of a two-temperature model developed for fast ion damage in solids could be applicable to predicting the effects of fast electrons. Recent results from STEM-directed epitaxial growth on crystalline–amorphous interfaces are discussed in detail. Finally, perspectives on the development of this field in the near future are offered.
Prineha Narang, Litao Zhao, Steven Claybrook, and Ravishankar Sundararaman. 2017. “Effects of Interlayer Coupling on Hot Carrier Dynamics in Graphene-derived van der Waals Heterostructures.” Advanced Optical Materials. Publisher's VersionAbstract
Graphene exhibits promise as a plasmonic material with high mode confinement that could enable efficient hot carrier extraction. The lifetimes and mean free paths of energetic carriers have been investigated in free‐standing graphene, graphite, and a heterostructure consisting of alternating graphene and hexagonal boron nitride layers using ab initio calculations of electron–electron and electron–phonon scattering in these materials. It is found that the extremely high lifetimes (3 ps) of low‐energy carriers near the Dirac point in graphene, which are a 100 times larger than that in noble metals, are reduced by an order of magnitude due to interlayer coupling in graphite, but enhanced in the heterostructure due to phonon mode clamping. However, these lifetimes drop precipitously with increasing carrier energy and are smaller than those in noble metals at energies exceeding 0.5 eV. By analyzing the contribution of different scattering mechanisms and interlayer interactions, desirable spacer layer characteristics—high dielectric constant and heavy atoms—that could pave the way for plasmonic heterostructures with improved hot carrier transport have been identified.
Ana M. Brown, Ravishankar Sundararaman, Prineha Narang, Adam M. Schwartzberg, William A. Goddard, and Harry A. Atwater. 2017. “Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles.” Phys. Rev. Lett., 118, Pp. 087401. Publisher's VersionAbstract
Ultrafast pump-probe measurements of plasmonic nanostructures probe the nonequilibrium behavior of excited carriers, which involves several competing effects obscured in typical empirical analyses. Here we present pump-probe measurements of plasmonic nanoparticles along with a complete theoretical description based on first-principles calculations of carrier dynamics and optical response, free of any fitting parameters. We account for detailed electronic-structure effects in the density of states, excited carrier distributions, electron-phonon coupling, and dielectric functions that allow us to avoid effective electron temperature approximations. Using this calculation method, we obtain excellent quantitative agreement with spectral and temporal features in transient-absorption measurements. In both our experiments and calculations, we identify the two major contributions of the initial response with distinct signatures: short-lived highly nonthermal excited carriers and longer-lived thermalizing carriers.
J. Mertens, M.E. Kleemann, R. Chikkaraddy, P. Narang, and J. J Baumberg. 2017. “How Light Is Emitted by Plasmonic Metals.” Nano Letters, 17, 4, Pp. 2568-2574. Publisher's VersionAbstract
The mechanism by which light is emitted from plasmonic metals such as gold and silver has been contentious, particularly at photon energies below direct interband transitions. Using nanoscale plasmonic cavities, blue-pumped light emission is found to directly track dark-field scattering on individual nanoconstructs. By exploiting slow atomic-scale restructuring of the nanocavity facets to spectrally tune the dominant gap plasmons, this correlation can be measured from 600 to 900 nm in gold, silver, and mixed constructs ranging from spherical to cube nanoparticles-on-mirror. We show that prompt electronic Raman scattering is responsible and confirm that “photoluminescence”, which implies phase and energy relaxation, is not the right description. Our model suggests how to maximize light emission from metals.
Emiliano Cortés, Wei Xie, Javier Cambiasso, Adam S. Jermyn, Ravishankar Sundararaman, Prineha Narang, Sebastian Schlücker, and Stefan A. Maier. 2017. “Plasmonic hot electron transport drives nano-localized chemistry.” Nature Communications, 8, Pp. 14880 EP . Publisher's VersionAbstract
Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry.
Georgia T. Papadakis, Prineha Narang, Ravishankar Sundararaman, Nicholas Rivera, Hrvoje Buljan, Nader Engheta, and Marin Soljačić. 2017. “Ultralight Angstrom-Scale Optimal Optical Reflectors.” ACS Photonics. Publisher's VersionAbstract
High reflectance in many state-of-the-art optical devices is achieved with noble metals. However, metals are limited by losses and, for certain applications, by their high mass density. Using a combination of ab initio and optical transfer matrix calculations, we evaluate the behavior of graphene-based angstrom-scale metamaterials and find that they could act as nearly perfect reflectors in the mid–long-wave infrared (IR) range. The low density of states for electron–phonon scattering and interband excitations leads to unprecedented optical properties for graphene heterostructures, especially alternating atomic layers of graphene and hexagonal boron nitride, at wavelengths greater than 10 μm. At these wavelengths, these materials exhibit reflectivities exceeding 99.7% at a fraction of the weight of noble metals, as well as plasmonic mode confinement and quality factors that are greater by an order of magnitude compared to noble metals. These findings hold promise for ultracompact optical components and waveguides for mid-IR applications. Moreover, unlike metals, the photonic properties of these heterostructures could be actively tuned via chemical and/or electrostatic doping, providing exciting possibilities for tunable devices.
P. Narang, R. Sundararaman, A. S. Jermyn, W. A. Goddard, and H. A. Atwater. 2016. “Cubic Nonlinearity Driven Up-Conversion in High-Field Plasmonic Hot Carrier Systems.” J. Phys. Chem. C, 120, Pp. 21056. Publisher's VersionAbstract
Surface plasmon resonances confine electromagnetic fields to the nanoscale, producing high field strengths suitable for exploiting nonlinear optical properties. We examine the prospect of detecting and utilizing one such property in plasmonic metals: the imaginary part of the cubic susceptibility, which corresponds to two plasmons decaying together to produce high energy carriers. Here we present ab initio predictions of the rates and carrier distributions generated by direct interband and phonon-assisted intraband transitions in one and two-plasmon decay. We propose detection of the higher energy carriers generated from two-plasmon decays that are inaccessible in one-plasmon decay as a viable signature of these processes in ultrafast experiments.
Ana M. Brown, Ravishankar Sundararaman, Prineha Narang, William A. Goddard, and Harry A. Atwater. 2016. “Ab initio phonon coupling and optical response of hot electrons in plasmonic metals.” Physical Review B, 94, 7, Pp. 075120–. Publisher's VersionAbstract
Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.
Ana M. Brown, Ravishankar Sundararaman, Prineha Narang, William A. Goddard, and Harry A. Atwater. 2016. “Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry.” ACS Nano, 10, 1, Pp. 957–966. Publisher's VersionAbstract
The behavior of metals across a broad frequency range from microwave to ultraviolet frequencies is of interest in plasmonics, nanophotonics, and metamaterials. Depending on the frequency, losses of collective excitations in metals can be predominantly classical resistive effects or Landau damping. In this context, we present first-principles calculations that capture all of the significant microscopic mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions so generated. Specifically, we include ab initio predictions of phonon-assisted optical excitations in metals, which are critical to bridging the frequency range between resistive losses at low frequencies and direct interband transitions at high frequencies. In the commonly used plasmonic materials, gold, silver, copper, and aluminum, we find that resistive losses compete with phonon-assisted carrier generation below the interband threshold, but hot carrier generation via direct transitions dominates above threshold. Finally, we predict energy-dependent lifetimes and mean free paths of hot carriers, accounting for electron–electron and electron–phonon scattering, to provide insight toward transport of plasmonically generated carriers at the nanoscale.